
Information at all.net 2012-09 http://all.net/

All.Net Analyst Report and Newsletter
Welcome to our Analyst Report and Newsletter

Eventually, you are going to make a mistake

Nobody is perfect. No matter how good you are at what you do, no matter how careful, at
some point, you will push the wrong button. That's the theory of the attackers sending out an
unlimited stream of attack mechanisms that exploit different weaknesses in systems offering
you choices you should never have to make. The idea of choice is a mistake in most cases,
and the exploitation of choice is one of the most prevalent methodologies underlying attacks
today.

But isn't choice good?

Free choice – it is the fundamental of the free society. And yet choice in computer security is
almost never a good idea. The choice users are given, time and again, is whether or not to
allow access by a program. Eventually, any user will enter the wrong answer. And of course,
the answer is often unclear because the question is often unclearly stated. Do you not agree?

YES NO

By the way, some decision will pop up with slightly different wording and different meanings to
the possible answers many times per day on average. Even if your answers are right 99% of
the time, that means that every few weeks you will get one wrong.

Get it wrong once...

and the attackers will gain access to the account you are using. The fundamental problems
here are many-fold and have gone unaddressed for decades.

• The issue of user choice is obvious by now. Enough choices and eventually you get
one wrong, and the consequences may be ongoing arbitrary unlimited remote access.

• The second major problem is that once you get one wrong, whatever they did will
remain indefinitely, because there is no obvious way to tell what the side effects were
after the fact, and even if there were, getting rid of them is essentially infeasible.

• The next major issue is that the available countermeasures are not well supported. For
example, isolation of such things is incredibly hard and inconvenient in today's
computing environments.

• Another major problem is the lack of trusted path. Trusted path has long been a known
problem, and it is fundamental to trusted systems. The basis problem we face is that
we cannot tell the difference between a legitimate request and a Trojan horse request.
This should be immediately obvious on its face to every user in every system.

• And then there is the problem that most users use one account for a myriad of things.
Once it is taken over, essentially everything they access is accessible by the attacker.
Switching accounts is not very easy to do, and it creates lots of inefficiencies.

There are other similar problems, but they all come down to the same thing. Efficiency, ease-
of-use, and utility are at odds with the poor security implementations we are using today.

Copyright(c) Fred Cohen, 2012 - All Rights Reserved 1 of 3

Information at all.net 2012-09 http://all.net/

And it will happen more and more

Its getting worse every day. And it will keep getting worse unless and until the sellers of the
computer systems and software we use are forced to do better. The market won't do it. That's
just not how markets work. It costs more, makes it a bit harder, and the market for “secure”,
even if it exists, won't have the opportunity to get expressed.

Ten years ago, a pretty decent expert could get Linux to operate securely with substantial
effort. While Windows and OSX and other operating environments in widespread use were
insecure and not readily securable, the automatic update process has made the entire
ecosystem problematic and full of uncontrolled software changes from afar. Linux cannot be
reasonably secured without a great deal of effort, and Windows and OSX are pretty much
hopeless. The extension of trust to third parties has become so untenable that it is infeasible
to even know who wrote the code you depend upon or how many parties were involved. The
notion that review will find holes in code was long ago a fantasy. When scores of previously
unrevealed vulnerabilities appear in major utilities upon a few weeks of testing, the situation
becomes nearly unmanageable for the average, or even sophisticated end user.

Where do the users go from here?

The most tenable solution I have identified for the motivated end user wishing to be efficient
and prosperous in the greater Internet environment today is a plan of risk disaggregation
using virtual machines and remotely mounted (via ssh) encrypted disk areas within a platform
that is relatively locked down. A notional version of this is operating in some of our internal
environments today, and while it is a bit inconvenient, it is reasonably functional, until people
start making big rather than small mistakes. They will still be made, but with less frequency
and less consequence. Here's the basis outline of a plan:

Virtualization: In each user machine there are a set of virtual machines (VMs) connected by
the raw computing environment, which is limited in its use. For example, suppose we have
OS-X as the raw environment, and within it we only do the basic network connectivity, file
system management, remote access management, display management, and similar
activities. Within this environment, we run a set of virtual machines for different partitions of
different functions with different operating environments. For example, email is constantly
used and too inconvenient to separate out. Even though we have many email addresses per
person, they are aggregated into merged views by the email client, which resides in its own
VM. But many less universally useful operations, like software development and testing
platforms, are kept in their own VMs running Linux, Windows, etc., that are booted as needed
and shut down when not in use.

Partitions: The partitions, in this case operational partitions, each run with remote access to
related encrypted disk storage areas, such as project areas and similar data sets associated
with the individual and their uses. Each partition may be accessed from multiple virtual
machines, and all have more or less equivalent access based on user ID and partition. For
example, we might have one partition for each major client, project, or field of endeavor, and
some other more generic partitions for things like Web sites, etc.

Operation: To operate in this environment, the user typically starts some standard VMs (from
read-only images) at login, such as the email VM, and mount their storage partitions. These
are rarely shut down. When performing a specific task, such as accessing sensitive

Copyright(c) Fred Cohen, 2012 - All Rights Reserved 2 of 3

Information at all.net 2012-09 http://all.net/

databases for a project, a VM is started (from read-only storage), disks are mounted from
within the VM, and appropriate programs are started up. When work on a project starts, a 15-
30 second overhead occurs, but from then till the work stops, operations proceed as usual.
Typically, these processes operate for minutes to hours, depending on specifics, but when
they are no longer in use, for example when the current draft project report is done and sent
off to the customer, VMs are shut down, partitions are unmounted, and content is no longer
accessible. Moving content between partitions requires a VM authorized to access all relevant
partitions, or a system of drop boxes can be arranged as temporary storage for movement
from and to partitions. Thus you drop files from a project into a partition to email it, and email
clients can drop files into storage readable by VMs. The time costs are nontrivial, but it is a
tradeoff that can balance time with risk by having smaller or larger partitions and VM contexts.

Backup and restore: To back this system of mechanism up, an internal backup server with
no direct external access, mounts partition after partition, doing backups to internal disks
drives. These are rotated into secure storage areas periodically. Restoration uses the same
mechanisms – remote mount and copy of the backup into the partition. This is all automated
so that a single command does a backup of all of the VMs and partitions, and this can be run
periodically if so desired.

Limitations: Of course all such systems have their weaknesses. For example, the master
system where the user resides could be attacked and used over time to gain increasing
access during the periods of operation of the VMs. Remote control could be used to activate
the VMs when the user was not present. The main security mechanism in this approach
stems from protection of the environment used by the user, and it's easy to make a mistake of
the desired applications are present in that system without using a VM. Updates to the
controlling system are still problematic, and of course each of the controlled systems
potentially gets more and more compromised with time. If the VMs are rebooted from read-
only media each time, they are not readily updateable, but on the other hand, any attacks will
not persist past the reboots that they more frequently experience. Common mode failures, like
successful attacks on the cryptographic infrastructure, and of course attacks on the controlling
system, can potentially defeat all of the other controls. This is only a start, but you get the
idea. And the biggest limitation of them all – it's too complicated for most users today.

Tradeoffs

Users working in today's “modern” computing environments are practically guaranteed to be
successfully attacked. The alternative is to live in the past. But there are ways to better control
risk and live in a mix of the past and future – until and if ever things change. Tradeoffs in
terms of reduced ease of use, speed of starting key operations, ability to rapidly integrate any
content from anywhere with any other content from anywhere else, and similar things must be
made in order to disaggregate risks, reduce the consequences of most attacks, slow
attackers, and gain and retain control over the situations most likely to do the most harm.

But most users don't know how to control these risks, what the tradeoffs are, and how to
apply them. And worse yet, implementing such controls is not readily facilitated in a secure
manner by available mechanisms or made automatic in normal user experience. If these sets
of controls were automated and transparent to the user, the story would be a lot different, but
for now, only trained and careful users can even attain this level of control while still operating
in modern computing environments. And eventuality, we all make mistakes...

Copyright(c) Fred Cohen, 2012 - All Rights Reserved 3 of 3

