
Information at all.net 2022-10 http://all.net/

All.Net Analyst Report and Newsletter
Welcome to our Analyst Report and Newsletter

The assumption of breach1

It is a ridiculous notion that we should assume that everything is breached all at once. This
can never work. The reason is simple. In such a system, reliability would be 0. You could
never trust or rely on anything. So we need some sort of a trust model to make sense of the
potential of breach, whatever that is. I prefer the term subversion2 to breach to start. So I will
use it to describe states (subverted / unsubverted) of a component3 or a composite4.

What might we reasonably assume?

Any complex system can be subverted. The reliability and availability equations from fault
tolerant computing seem like a reasonable basis for creating a model of how subverted a
system is over time. Here are the basics:

• Assume systems get subverted on a random basis with a mean time to subversion
(failure) of F.

• Assume such systems get repaired (somehow unsubverted) with a mean time of R.

• The unsubverted portion of systems operation is then computed as (F/(R+F)), i.e., the
time till failure (unsubverted time) divided by total time (unsubverted + subverted).

So systems that get subverted after a year of unsubverted service on average (F=1) and
repaired after a quarter of a year of being subverted (R=0.25) are unsubverted F / (F + R), or
1/(1+.25) = 1/1.25=0.8 (80%) of the time. This assuming of course a simple sequence of
unsubverted followed by subverted followed by unsubverted, etc.

However, in the reliability version of the world, failed parts are failed until fixed, and fixed parts
are fixed till failure. But in security, we can have multiple simultaneous breaches. So even
when we repair (unsubvert) one subversion, there may be other subversions in place.

If we take the example above, (R=0.25, F=1) but there are multiple components that this
applies to, all of which have to be unsubverted in order to have the composite of those
components to be unsubverted, things get problematic fast. A simple version is that for each
component, there is 80% probability of unsubversion (20% chance of subversion at any given
time), for a composite of N components, and assuming subversions are independent events,
the probability of the system being unsubverted (i.e., all N components are unsubverted at the
same time) is P(P1 and P2 and … PN) = P(P1) x P(P2) … x P(PN), which for each component
being the same P → PN, and for 80% unsubverted → 0.8N so for 10 components, this comes
to about 0.10737…, about an 11% chance of the composite being unsubverted at any given
time. That means almost 90% of the time, the system would be subverted.

We can obviously apply this to more complex scenarios, as we should, using probability
theory and identifying redundancy and interdependencies and measured times.

1 a gap in a wall, barrier, or defense, especially one made by an attacking army.
2 the undermining of the power and authority of an established system or institution.
3 a part or element of a larger whole, especially a part of a machine or vehicle.
4 a thing made up of several parts or elements (i.e., components).

Page 1 of 8 Copyright (c) Fred Cohen, 2022 - All Rights Reserved all.net

Information at all.net 2022-10 http://all.net/

Components vs. composites

I have been a bit unclear on this component/composite thing. Composites are composed of
components, which themselves may be composites (they almost always are). The thing we
are interested in is the properties of composites based on the properties of their components.

As an example, in fault tolerant computing, we can use redundancy to cover faults, so that a
redundant voting scheme with 3 inputs and 3 outputs doing a majority vote on the outcome of
one bit, only fails to produce the right output when 2 of 3 outputs are wrong values. Individual
faults by components do not produce failures of the composite. Rather, at least 2 faults must
be present to produce a failure. The faults may be in the components or the inputs. Such
composites and their components operate over defined operating ranges of physical
properties (e.g., temperature, pressure, voltages, currents, rates of change, fan-in, fan-out,
induced flux levels, gravitational forces, impulse behavior, etc.), and if those properties are
not held true, the predictions of the engineering analysis may also not hold true.

We can also build composites out of software components, which is how essentially all
commonly used software systems are built. In most cases, the software is composed of
components of software from multiple sources, each built from other components, etc. This is
described as a supply chain, or interdependencies.

A subversion of a component in the supply chain can be carried through to the transitive
closure of interdependencies, the mean time to subversion is unknown but studies have
shown it to be very small when intentionally induced by authors of components, while the
mean time to unsubversion is often in the range of years. The current capacity to identify
interdependencies for unsubversion processes relies on the software bill of materials (SBOM)
technology which is reducing unsubversion time and cost dramatically after detection of a
subversion.

For a composite such as they typical user computer today, there are perhaps 10,000 software
components at 2 levels of transitivity of supply chain. The time to subvert a component is
likely hours to days when targeted maliciously, and really for many of these components, it’s
just a matter of resources applied to perform subversion. There are likely 100+ governments
and hundreds of non-state actors at any given time performing such subversions, so even if
there was only one such subversion a day on average for each of 100 actors, the current lack
of change control on the supply chain leads to many known cases of months to detect. Let’s
be generous and say 10 days to detect and deploy a patch (i.e., unsubvert).

For any one component, the odds of subversion are then 100/10,000 = 0.01 subversions per
component per day, or 100 days for F, while unsubversion (R) is 10 days. So then we will
have F / (F + R) for F=100 days and R=10 days, or 100/110 = 0.909... (91%) unsubverted
time and 9% subverted time per component. For 90.909…% unsubverted per component and
10,000 components, we get 0.9090909...10,000 for the unsubverted portion of the time for the
composite, which is too small to calculate on my calculator. For only 1,000 components, this
comes to something like 4*10-2040, again according to my (I am now convinced) almost
certainly always subverted cell phone calculator.

The situation looks pretty grim up to here, and the assumption of breach is looking pretty
good. Even when a small portion of components are subverted, composites relying on all
those components are almost certainly subverted all the time.

Page 2 of 8 Copyright (c) Fred Cohen, 2022 - All Rights Reserved all.net

Information at all.net 2022-10 http://all.net/

It looks bad from here, however

I may have forgotten to mention that subversion of components and thus the composite does
not mean that the composite is doing anything particularly harmful.

In fault tolerant computing, systems may have many faults that are never exposed and thus
never produce failures. Other faults may rarely produce failures, and of course failures of a
composite might not produce failures of a larger composite of which the failure prone
composite is a component. Furthermore, some failures are worse than others. For example, if
my calculator had a bad last bit in its calculations and calculated to 20 digits only showing 18,
it would be rare when the last bit fault would produce an output that was not accurate to the
precision shown, and if/when it was inaccurate, it would only reflect a minimal difference
between the right answer and the presented answer. Indeed all digital calculators are
inherently wrong for cases like the calculation of 1/3 (e.g., 0.33333...), where they can never
produce a value that is fully precise and accurate, because no matter how many digits of
accuracy you produce, the 3s never end.

As an example, when the log4j subversion was announced, I checked my systems, and found
that something like 1 in 5 had an apparent log4j library installed. So naturally, I did the chmod
to remove root privileges. But I also checked to see whether the subversion was exposed in
my systems, and found that it was not. In my case, I tend to control the software operating on
most of my platforms, and as such, none of my platforms were using software that ever used
the library in question. Thus the subversion was present, but could never be exercised. Why
then did I do the chmod? It was easy and in case I was mistaken or some software in the
future might expose the subversion, I figured why take the chance?

There are two things involved here; (1) exposure of subversions to exploitation and (2)
consequences associated with such exposure. Naturally, I will handle them in the reverse
order here:

• Consequences of exposed subversions are contextual: The same subversion may
be exposed leading to global thermonuclear war or exposed leading to an undisplayed
last bit of a calculation for this article. Hopefully this is not true in reality (I suspect it is
not but if I knew I could not tell you), but conceptually it could be true, and it is true for
many subversions.

• Exposure is a function of how the components are composed: The same
components composed in different ways produce different exposures of the same
subversions. The mere presence of a subversion doesn’t mean it will ever be
exercised.

And then there is the HR component

I think I forgot to mention HR (Human Reliability) in my equations above. Of course I didn’t
really forget it, and the equations take it into account, but in order to use the equations
properly, you need to include people as components of the composite for systems where
humans are involved.

A longstanding widely used approximation is that 1/3 of people will violate employer trust
regardless of situation, 1/3 will never violate such trust regardless of situation, and 1/3 will
violate that trust under stresses of various sorts. Note that we cannot be precise here…

Page 3 of 8 Copyright (c) Fred Cohen, 2022 - All Rights Reserved all.net

Information at all.net 2022-10 http://all.net/

So, for an entity (composite) with 90 workers (the precision returns), 30 will always be
subverted (time to subvert=0, time to unsubvert=5 years or whatever the mean time to
termination is in the company → F / (F + R) for F=0 → 0% of the time unsubverted), 30 will
never be subverted (100% unsubverted), and 30 may or may not be subverted and may
change with time. If all 90 must be non-subverted in order for the composite to properly
function, sell the company… which is why we have things like...

Countermeasures

The structure of a composite can be architected to reduce the effect of subversions. An
example of this is separation of duties. By architecting the composite so that no component
can create an obligation and meet it, the exercising of a subversion requires that both
components be subverted, although not necessarily over the same time spans, in order for
the composite to be subverted in this regard.

The time span issue brings us to the time transitivity of information flows and related issues
that I will largely ignore for now, but in general has to do with the fact that composites are
normally composed of sequential mechanisms and thus the composite is sequential and
subversions of sequencing and sequential changes to the composite come into play.

From a countermeasure perspective, sequencing methods such as submit/commit cycles in
composites allow for fail safe conditions in case of inadequate subversions, time limitations on
sequential subversions, and other similar approaches. For example, a submit commit cycle
assuming diligence by each of the two process steps and independence of the submission
and committal, lead to subversions only producing composite subversion if more than one
component is subverted or the mechanisms of composite sequencing are subverted. In the
simplest case, if two mechanism must be simultaneously subverted, the equations for
subversion change from any (e.g., P(P1 and P2 and … PN) = P(P1) x P(P2) … x P(PN)) to all,
the same equation, but for subverted components rather than unsubverted components, thus
P((1-P1) and (1-P2) … (1-PN)) = 1-P(1-P1) x 1-P(P2) … x 1-P(PN)), or in other words, for (F=1)
and (R=0.25) 1-0.8 subverted (20%) of the time, and P(P1 and P2) is 0.2*0.2 = 0.04 or 4% of
the time both are subverted. Going to an N-step approval process brings (1-P)N for all N
subverted, and we can drop the likelihood of subversion to any desired degree by
redundancy, remembering that this redundancy brings with it the assumptions no collusion
(i.e., independence) and alternative methods of subversion.

For example, suppose we wish to deny services to the composite rather than cause it to
produce a wrong result? Remember that we were generic with regard to the concept of
subversion. Multiple steps in a sequence increases the number of non-subverted components
required in order to perform the function of the composite. Increasing the sequence length
also increases the time required for the composite to produce results. We are subverting the
performance of the composite by architecting it to reduce the effect of subversions through
sequencing. In a complex composite with timing and reliability constraints around
communication between components, subversion of commonly used components, such as
communications or mechanisms sharing the same components (e.g., a DNS server, a
network, etc.), we have higher valued targets for subversion because the composite is not
equally divided in its dependency on the components. A disease spreading among the people
may cause delays in processing commits, leading to timeouts in processes, forming a
complex interdependency chain of subversions to the composite.

Page 4 of 8 Copyright (c) Fred Cohen, 2022 - All Rights Reserved all.net

Information at all.net 2022-10 http://all.net/

The unevenness of subversions

Some people will be loyal, some will not, and some may or may not be depending on the
situation. That is the nature of things based on the history of people and their loyalties. The
problem in terms of metrics is identifying which is which. The problem in terms of composite
design is measuring the components so you can get the right mix of redundancies so the
composite comes out with the desired level of overall subversion.

The Defense Personnel and Security Research Center (PERSEREC)5 is a Department of
Defense entity dedicated to improving the effectiveness, efficiency, and fairness of DoD
personnel suitability, security, and reliability systems. They have done this over the years by
studying the behaviors of people, including turning behaviors, and ultimately finding ways to
better adjudicate background investigation results. This field of endeavor has largely become
automated because of the vast amount of available information on people and the historical
findings about loyalties and how and why they happen. But human reporting (sensors) of
indicators6 remain one of the most important ways that subversions are identified.

The time frames for detection and mitigation of human subversions tend to be quite long, and
in the detected cases where the worst harm has been done, the failure to systematically and
in a timely fashion act on detected subversion behaviors has been a common theme. The
same has held true for major losses associated with software subversions, where automation
has made mitigation timeliness far more important and time frames before harm far shorter.

Then we have the issue of collusion. In many cases, multiple actors collude to subvert a
composite. Outsiders acting with insiders historically produced something like 2/3 of the
losses in the cyber realm. And if you look at examples like cyber extortion, there is almost
always an inside and outside component involved, albeit the inside component is most often
not intentional. On the other hand, a group of something like 5 employees at a branch of a
major global bank colluded to steal from the bank in recent years. At the end of the day, if
enough components of the composite collude (or combine in parallel and/or in sequence) to
subvert the composite, the composite will be subverted. Thus combinations and sequences of
subversions must be analyzed in order to gain clarity around complex subversions.

Some bounds on subversion

Building a model of subversions is problematic, in no small part because of this wide
unevenness. Simple models lead to simplistic conclusions. However, we might be able to put
some numbers around bounds on subversions.

One approach is to take the common vulnerability (CVE) database and identify the number of
known subversions of any given operating environment over a time frame to get a lower
bound on the rate of subversions. We can then try for a lower bound on time to mitigate from
published studies, of which there are several, or use the “patch Tuesday” approach of at most
one mitigation per month (in most cases) and thus an average of 15 days till mitigation (as a
lower bound). These are obviously best case assumptions, but... For Windows 10, we get
about 50 new CVE entries per month7 For F=0.6 and R=15 we get F/(F+R) = 0.6/15.6 = 0.04,
or a 4% change of each Windows 10 system being unsubverted at any given time.

5 https://www.dhra.mil/perserec/
6 https://www.dhra.mil/Portals/52/Documents/perserec/reports/core_brochure.pdf
7 https://www.cvedetails.com/vulnerability-list/vendor_id-26/product_id-32238/Microsoft-Windows-10.html

Page 5 of 8 Copyright (c) Fred Cohen, 2022 - All Rights Reserved all.net

Information at all.net 2022-10 http://all.net/

Back to breach8

There is another similar meaning of breach, which is, in essence, the act of breaking a deal.
These acts are then associated with a threat actor. Which brings us to TxV→C (threats
exploiting vulnerabilities produce consequences) and the sequential nature of attack and
defense.

While we can reasonably presume that widely used composites such as Windows 10 are
subverted essentially all the time, and that any substantial network is always subverted as a
composite, that does not imply that any of the composites or components of any given
composite have been breached in this sense of the word.

The assumption of breach presumes that for any given composite of interest, it is currently in
a state of breach. That is to say, that in addition to being subverted, subversions are being
exploited to produce consequences. Or in the TxV→C world, that threats have or are
exploited or exploiting vulnerabilities to produce consequences.

It’s important to note that consequences occur over time, so that if all the consequences have
happened, there is nothing you can do about them, and it is a waste of time to try. In effect,
past consequences have already occurred, and from a breach standpoint, there is nothing we
can do about it, even if there may be post-hoc mitigations.

We know from the analysis of subversions that vulnerabilities are very likely to exist in
substantial composites, and certainly in commonly used operating environments. Assumption
of vulnerabilities, however, does not produce the conclusion of assumption of breach. We still
have threats exploiting those vulnerabilities to produce consequences.

As previously discussed, in order to exploit a vulnerability (cause a subversion to produce an
effect), proper inputs must be placed in the proper locations in the proper sequence and
resulting outputs must occur in the proper sequence and places to produce consequences.
This is essentially the counterargument to everything being breached all the time.

Countermeasures

Every usable system has countermeasures to breach. The inherent redundancy of physics in
the electronics of components of computer systems is produced by not having each logical
component comprised of a single molecule or a single electrical or magnetic charge. Rather,
multiple molecules and charges are used for storage, communication, and transformations in
the finite state automata that comprise circuit composites. The subversion of these
mechanisms at the atomic level is constantly present, yet we build reliable systems from
unreliable components every day. Other forms of redundancy at the hardware level are
common.

As we get to higher levels of complexity both in terms of components and composites, we end
up in more complex architectural structures where there innumerably large numbers of
subversions possible relative to the innumerable number of different aspects of behaviors of
the composites. Even the definition of “secure”9 has many different interpretations and facets
when it comes to all possible subversions.

8 an act of breaking or failing to observe a law, agreement, or code of conduct.
9 Note that the term secure is not just possibly a noun. It is a verb [fix or attach (something) firmly so that it

cannot be moved or lost], and adjective [fixed or fastened so as not to give way, become loose, or be lost]
and as often used in the cybersecurity arena, a state of being [free from danger OR according safety, etc.]

Page 6 of 8 Copyright (c) Fred Cohen, 2022 - All Rights Reserved all.net

Information at all.net 2022-10 http://all.net/

Countermeasures can never produce a composite that is in fact secure by the “free from
danger” definition, nor can there be any such composite, and of course the term “danger”10 is
itself not informative as to specifics. The consequences of “injury, pain, harm, or loss” are
ever-present and can come in many forms. Arguably, any effort we spend to secure a
composite produces harm in the loss associated with the effort, and thus the cost vs. loss
tradeoff comes into play. Furthermore, the mechanisms of composites are subject to all
manner of variances within specifications, and even the specifications of components are
rarely in terms of the various possible event sequences of components that can cause the
composite to produce composite loss. In simple terms, we do not even understand an
underlying science of what we mean by security.

But we do have countermeasures to historically identified and projected future event
sequences with known ranges of consequences. And there are lots of them in place in almost
every current commercial system used as a component of a networked environment. And the
architecture of those environments include many components that cover many of the paths
from threat to consequence.

This ultimately leads to issues of attack graphs which have been explored for some time, and
this leads to the notion of modeling and simulation, also explored for some time, which leads
to the notion of model-based situation anticipation and constraint11 12 13, a generalization
reflective of how thoughtful decisions are made. A list of areas of countermeasures and attack
methods at a level of granularity suited to simulation and related analysis from some time ago
is available for those interested.14 15 Issues of granularity lead to problems in modeling and
simulation complexity, limiting the use of high-end methods to entities with a lot of resources,
however, simplified versions are used for risk management based on probabilistic or other
models.16

One final problem is that instrumentation is inadequate to identify all breaches, even after
they take place. Thus any estimates based on facts will at best be lower bounds on actual
breaches in place. As an example of this, recent estimates of “exploitation events” having
reached 48,904,064 in Q1 and Q2 of 2022 might lead to some analysis, except of course the
lack of references for the claim and no information on what this may actually mean in terms of
consequences or systems or anything else is problematic. A more reliable source might be
the 2022 breach investigation report from Verizon17 which indicates as a headline “23,000
incidents and 5,200 confirmed breaches from around the world”. That from their subset of
actual activities.

Fear Uncertainty and Doubt dominate the available information, and very few of the so-called
studies lead to information that could reasonably be used for an actual analysis of breaches.
While these fear-inducing mechanisms may be good for selling cyber-security, they do not
enlighten us as to the real nature of breaches or the assumption of breach.

10 exposure or liability to injury, pain, harm, or loss
11 http://all.net/Analyst/2021-07-20-Forefront-Cyber-Risks-Nuclear-Safety.pdf
12 http://all.net/journal/ntb/cause-and-effect.html
13 https://youtu.be/3Q1w6a9241g
14 http://exec.all.net/game?what=Responder
15 http://all.net/journal/ntb/simulate/simulate.html
16 http://all.net/SoP/SecDec/RM0.html
17 https://www.verizon.com/business/resources/reports/dbir/

Page 7 of 8 Copyright (c) Fred Cohen, 2022 - All Rights Reserved all.net

Information at all.net 2022-10 http://all.net/

Realities

In reality, all systems are not always breached, in the sense of producing identified losses
(negative consequences). As an example, I run a server at Amazon Web Services (AWS) that
continues to provide its utility over time. The nature of the system is that providing that
identified utility is the only consequence of import to me, the “owner”, and as such, a breach
would have to change this in order to be counted.

Indeed there are billions of computers all over the world providing utility to their users all the
time, including billions of cell phones, hundreds of millions of networking devices and servers,
and lots of other similar sorts of composites.

Furthermore, a breach without consequence (actual harm) is likely irrelevant.

If a tree falls in a forest, does it make a sound?

It depends on your definition of sound.

People spit on the street, which is against the law in many places. Researchers violate codes
of conduct in the cyber-security field all the time, and mostly they don’t even know they are
doing so. Most online click agreements are so complex as to be impossible to fully
understand, and thus are likely violated all the time. Each one is a breach by the definition,
and the vast majority of them have no identified consequence.

What does the assumption of breach get us?

Some seem to claim that this is about awareness. One we assume breach perhaps we are
obligated to act to mitigate. But mitigate what? We know by now that we cannot hope to
mitigate all of the subversions of systems, and we cannot even identify many of the breaches
that we already believe are occurring. We cannot perfectly prevent these breaches by any
known methods, at least not without removing the utility of the systems we depend on.

The assumption of breach today is being used to sell more security stuff, and one of the major
negative consequences is the increase in security load.18 19 It is truly unclear whether this
increased load combined with the increased out of pocket cost is worth any protective value
gained. It is even less clear whether the solutions being offered in this regard and under this
banner offer effective improvements compared to alternatives available for mitigation.

As a general rule, you can defeat any system by identifying the assumptions and violating
them.20 The assumption of breach is no exception. When you apply this approach, you
exhaust resources that might otherwise be spent on other things, like succeeding in your
enterprise. And as a competitor, I like your waste. Efficient use of resources is key to my
competitive advantage.

Conclusions

We know that systems including human and non-human components are subverted and that
subversion does not always lead to breach. We know that assuming breach is used to apply
fear, uncertainty, and doubt to cause customers to expend resources on defenses, but also
that it provides no guidance as to mitigation. In summary, it is a useless assumption.

18 http://all.net/Analyst/2021-06C.pdf
19 http://all.net/SoP/SecDec/HumanLoad.html
20 http://all.net/Analyst/2021-03C.pdf

Page 8 of 8 Copyright (c) Fred Cohen, 2022 - All Rights Reserved all.net

